The existence of traveling wave solutions for a three species competition system

Jong-Shenq Guo

Tamkang University
Joint work with Y. Wang, C.-H. Wu, and C.-C. Wu

Outline

(9) Introduction
(2) Main idea
(3) The details

4 Discussion

Introduction

- In a 1D habitat, there are three species u, v and w living together such that each species has the preference of food resource so that the competition occurs only between species u and v and between species v and w, respectively.
- In other words, species u and w have different preferences of food resource so that no competition between them.
- But, species v has both preferences so that it needs to compete with both species u and w.

So we have the following three species competition system:

$$
\begin{align*}
& u_{t}=D_{1} u_{x x}+r_{1} u\left(1-u-b_{12} v\right), \quad x, t \in \mathbf{R}, \tag{1}\\
& v_{t}=D_{2} v_{x x}+r_{2} v\left(1-b_{21} u-v-b_{23} w\right), \quad x, t \in \mathbf{R}, \tag{2}\\
& w_{t}=D_{3} w_{x x}+r_{3} w\left(1-b_{32} v-w\right), \quad x, t \in \mathbf{R}, \tag{3}
\end{align*}
$$

where $D_{i}>0, r_{i}>0, b_{i j}>0$.

- Here u, v, w are the population densities of species $1,2,3$,
- $b_{i j}$ is the competition coefficient of species j to species i,
- r_{i} is the net growth rate of species i,
- D_{i} is the diffusion coefficient of species i.
- Also, we have taken the scales of species so that the carrying capacity of each species is normalized to be 1 ,
- the states
$(u, v, w)=(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1)$ are equilibria of the system (1)-(3).

We shall always assume that
(A) $b_{12}, b_{32}>1, b_{21}+b_{23}<1$,
which means that the species u, w are weak competitors to the species v.
Intuitively, species v will win the competition and wipe out both species u and w eventually.
Therefore, the aim of this work is to study the existence of traveling wave for (continuous) model (1)-(3) in the form

$$
(u, v, w)(x, t):=(\varphi, \psi, \theta)(y), \quad y:=x+s t,
$$

where s is the wave speed and (φ, ψ, θ) is the wave profile.

We are interested in the monotone wave connecting the equilibria $(1,0,1)$ and ($0,1,0$).
Hence it is reduced to the study of the following problem:

$$
\left\{\begin{array}{l}
s \varphi^{\prime}=D_{1} \varphi^{\prime \prime}+r_{1} \varphi\left(1-\varphi-b_{12} \psi\right), \quad y \in \mathbf{R} \\
s \psi^{\prime}=D_{2} \psi^{\prime \prime}+r_{2} \psi\left(1-b_{21} \varphi-\psi-b_{23} \theta\right), \quad y \in \mathbf{R} \\
s \theta^{\prime}=D_{3} \theta^{\prime \prime}+r_{3} \theta\left(1-b_{32} \psi-\theta\right), \quad y \in \mathbf{R}, \tag{4}\\
(\varphi, \psi, \theta)(-\infty)=(1,0,1), \quad(\varphi, \psi, \theta)(+\infty)=(0,1,0) \\
0 \leq \varphi, \psi, \theta \leq 1
\end{array}\right.
$$

for certain speed $s>0$.

- The problem (4) is a 6-dim dynamical system.

Notice that, by a linearization of the corresponding kinetic systems to (1)-(3), we can easily check that near the equilibrium $(1,0,1)$ the stable manifold is of dimension 2 and the unstable manifold is of dimension 1 ; and the equilibrium $(0,1,0)$ is stable such that the stable manifold is of dimension 3 , under the assumption (A).

If we consider the linearization of the second equation of (4) around the state ($1,0,1$), the corresponding characteristic equation is given by

$$
\begin{equation*}
D_{2} \mu^{2}-s \mu+r_{2}\left(1-b_{21}-b_{23}\right)=0 . \tag{5}
\end{equation*}
$$

We easily obtain that (5) has a positive solution if and only if $s \geq s_{*}$, where

$$
s_{*}:=2 \sqrt{D_{2} r_{2}\left(1-b_{21}-b_{23}\right)} .
$$

Thus, the minimal speed $s_{\text {min }}$ (if it exists) for the continuous model (1)-(3) with $\varphi^{\prime}<0, \psi^{\prime}>0, \theta^{\prime}<0$, must satisfy that $s_{\text {min }} \geq s_{*}$.

Indeed, since the limiting linear equation of the second equation in (4) as $y \rightarrow-\infty$ is given by

$$
D_{2} \psi^{\prime \prime}-s \psi^{\prime}+r_{2}\left(1-b_{21}-b_{23}\right) \psi=0
$$

which has a monotone solution near $y=-\infty$ only if $s \geq s_{*}$. Hence we should have $s_{\text {min }} \geq s_{*}$.

We remark that the minimal speed $s_{\text {min }}$ is the constant such that a traveling wave solution with speed s exists if and only if $s \geq s_{\text {min }}$.

We now state the following main result of this work on the linear determinacy for (4).

Theorem 1

Assume that (A) holds. Also, let $D_{2}, r_{2}, b_{21}, b_{23}>0$ be given. Then $s_{\text {min }}=s_{*}$ as long as $\left(D_{j}, r_{j}, b_{j 2}\right) \in B_{j}^{1} \cup B_{j}^{2}, j=1,3$, where

$$
\begin{align*}
B_{j}^{1}:= & \left\{D_{j} \in\left(0,2 D_{2}\right], b_{j 2}\left(b_{21}+b_{23}\right) \leq 1, r_{j}>0\right\}, \tag{6}\\
B_{j}^{2}:= & \left\{D_{j} \in\left(0,2 D_{2}\right), b_{j 2}\left(b_{21}+b_{23}\right)>1,\right. \\
& \left.0<r_{j}<\left(2-\frac{D_{j}}{D_{2}}\right) \frac{r_{2}\left(1-b_{21}-b_{23}\right)}{b_{j 2}\left(b_{21}+b_{23}\right)-1}\right\}, \tag{7}
\end{align*}
$$

for $j=1,3$.

- In fact, the definition of linear determinacy is first defined in [Lewis-Li-Weinberger(2002)], which means that the minimal speed is determined by the linearization of the problem at some unstable equilibrium.
- For the works related to linear determinacy, we refer to [Hosono(1998)], [Huang(2010)], [Huang-Han(2011)], [Guo-Liang(2011)] for a 2-species competition system.

Main idea for the proof of Theorem 1

First, we derive the linear determinacy of the spatial discretization of (1)-(3) in the following form

$$
\begin{align*}
u_{j}^{\prime}(t) & =d_{1} \mathcal{D}\left[u_{j}\right](t)+r_{1} u_{j}(t)\left[1-u_{j}(t)-b_{12} v_{j}(t)\right], \tag{8}\\
v_{j}^{\prime}(t) & =d_{2} \mathcal{D}\left[v_{j}\right](t)+r_{2} v_{j}(t)\left[1-b_{21} u_{j}-v_{j}(t)-b_{23} w_{j}(t)\right],(\mathbf{(9)} \\
w_{j}^{\prime}(t) & =d_{3} \mathcal{D}\left[w_{j}\right](t)+r_{3} w_{j}(t)\left[1-b_{32} v_{j}(t)-w_{j}\right], \tag{10}
\end{align*}
$$

for $j \in \mathbf{Z}, t \in \mathbf{R}$, where d_{j} is the discrete diffusion rate and
$\mathcal{D}\left[u_{j}\right]:=\left(u_{j+1}-u_{j}\right)+\left(u_{j-1}-u_{j}\right) \ldots$

- In particular, we take $d_{j}=D_{j} / \tau^{2}$ in (8)-(10) for any $\tau>0$ small.
- Hence we have a sequence of traveling waves for the approximated discrete problems.
- In order to passing to the limit, we apply the method of discrete Fourier transform to derive the equi-continuity of the approximation sequence of wave profiles.
- Such an indirect approach (used first in [G.-Liang(2011)]) might be unusual, but it has its own interest and advantage.

The details

Now, a traveling wave of (8)-(10) is a solution in the form

$$
\left(u_{j}(t), v_{j}(t), w_{j}(t)\right)=(U(\xi), V(\xi), W(\xi)), \quad \xi=j+c t
$$

where c is the wave speed and $\{U, V, W\}$ are the wave profiles.

Therefore, the problem of finding traveling wave of (8)-(10) is equivalent to find $(c, U, V, W) \in \mathbf{R} \times\left[C^{1}(\mathbf{R})\right]^{3}$ such that

$$
\left\{\begin{array}{l}
c U^{\prime}=d_{1} \mathcal{D}[U]+r_{1} U\left(1-U-b_{12} V\right), \quad \xi \in \mathbf{R}, \\
c V^{\prime}=d_{2} \mathcal{D}[V]+r_{2} V\left(1-b_{21} U-V-b_{23} W\right), \quad \xi \in \mathbf{R}, \\
c W^{\prime}=d_{3} \mathcal{D}[W]+r_{3} W\left(1-b_{32} V-W\right), \quad \xi \in \mathbf{R}, \\
(U, V, W)(-\infty)=(1,0,1), \quad(U, V, W)(+\infty)=(0,1,0), \\
0 \leq U, V, W \leq 1, \tag{11}
\end{array}\right.
$$

where $\mathcal{D}[u](\xi):=u(\xi+1)+u(\xi-1)-2 u(\xi)$ etc.

The first result shows the existence of the minimal wave speed for (11).

Theorem 2

Assume (A). Then there exists a positive constant $c_{\text {min }}$ such that the problem (11) admits a solution (c, U, V, W) satisfying $U^{\prime}(\cdot)<0, V^{\prime}(\cdot)>0$ and $W^{\prime}(\cdot)<0$ on \mathbb{R} if and only if $c \geq c_{\text {min }}$.

- The related works about the minimal speed for lattice dynamical systems can be found in, for example, [Chen-G.(2002)], [Chen-G.(2003)], [G.-Hamel(2006)], [G.-Wu(2008)], [G.-Wu(2012)].

Proof of Theorem 2

- We transform the problem into a monotone system.
- If we can find a suitable pair of super-sub-solutions, then we can apply the classical monotone iteration scheme.
- An idea developed in [Chen-G.(2003)], we study a sequence of truncated problems in which only a super-solution is needed.
- This method (of truncation) was applied to the two component LDS in [G.-Wu(2012)].
- The main difficulty here is to make sure the limit satisfies the desired boundary conditions at $\pm \infty$..
- To overcome this difficulty, we introduce one condition in the definition of super-solution as

$$
U_{+}\left(\xi_{0}\right)<1, W_{+}\left(\xi_{0}\right)<1 \quad \text { for some } \xi_{0} \in \mathbf{R}
$$

instead of non-constant-ness in the previous works.

To estimate the minimal speed of (11), we define

$$
c_{*}:=\inf _{\lambda>0}\left\{\frac{d_{2}\left(e^{\lambda}+e^{-\lambda}-2\right)+r_{2}\left(1-b_{21}-b_{23}\right)}{\lambda}\right\} .
$$

It is clear that

$$
\begin{equation*}
c \lambda=d_{2}\left(e^{\lambda}+e^{-\lambda}-2\right)+r_{2}\left(1-b_{21}-b_{23}\right) \tag{12}
\end{equation*}
$$

has a positive solution if and only if $c \geq c_{*}$.
Moreover, there exists $\lambda_{*}>0$ such that λ_{*} is the unique
solution of (12) when $c=c_{*}$. For $c>c_{*}$, (12) has exactly two solutions $\lambda_{i}(c), i=1,2$, with $0<\lambda_{1}(c)<\lambda_{2}(c)$.

Theorem 3 (Chen-G. (2003), Chen-Fu-G. (2006))

Let $c>0$ be a constant and $B(\cdot)$ be a continuous function having finite $B(\pm \infty):=\lim _{x \rightarrow \pm \infty} B(x)$. Let $z(\cdot)$ be a measurable function satisfying

$$
c z(x)=e^{\int_{x}^{x+1} z(s) d s}+e^{-\int_{x-1}^{x} z(s) d s}+B(x) \quad \forall x \in \mathbf{R} .
$$

Then z is uniformly continuous and bounded.
In addition, $\omega^{ \pm}=\lim _{x \rightarrow \pm \infty} z(x)$ exist and are roots of the characteristic equation

$$
c \omega=e^{\omega}+e^{-\omega}+B(\pm \infty)
$$

Apply this fundamental theorem to

$$
c V^{\prime}=d_{2} \mathcal{D}[V]+r_{2} V\left(1-b_{21} U-V-b_{23} W\right)
$$

with the ratio $z:=V^{\prime} / V$ at $\xi=-\infty$, we have

Theorem 4

Assume (A). Then $c_{\min } \geq c_{*}$.

By applying an idea used in [G.-Liang(2011)] ([G.-Wu(2012)]), the linear determinacy for (11) is given as follows:

Theorem 5

Assume (A). Let $r_{2}>0, b_{21}>0$ and $b_{23}>0$ be given. Then there exists a constant $d_{*}=d_{*}\left(d_{2}\right)>2 d_{2}$ such that $c_{\min }=c_{*}$ as long as $\left(d_{j}, r_{j}, b_{j 2}\right) \in A_{j}^{1} \cup A_{j}^{2}, j=1,3$, where

$$
\begin{align*}
A_{j}^{1}:= & \left\{d_{j} \in\left(0, d_{*}\right], b_{j 2}\left(b_{21}+b_{23}\right) \leq 1, r_{j}>0\right\}, \tag{13}\\
A_{j}^{2}:= & \left\{d_{j} \in\left(0, d_{*}\right], b_{j 2}\left(b_{21}+b_{23}\right)>1,\right. \\
& \left.0<r_{j} \leq \frac{d_{*}-d_{j}}{d_{*}-d_{2}} \cdot \frac{r_{2}\left(1-b_{21}-b_{23}\right)}{b_{j 2}\left(b_{21}+b_{23}\right)-1}\right\} \tag{14}
\end{align*}
$$

for $j=1,3$.

A detailed analysis of the quantity $d_{*}\left(d_{2}\right)$, we have

Lemma 6

Suppose that $\left(D_{j}, r_{j}, b_{j 2}\right) \in B_{j}^{1} \cup B_{j}^{2}$ for $j=1,3$. Let $d_{j}(\tau):=D_{j} / \tau^{2}$ and $d_{*}(\tau):=d_{*}\left(d_{2}(\tau)\right)$ for $\tau>0$. Then $\left(d_{j}(\tau), r_{j}, b_{j 2}\right) \in A_{j}^{1} \cup A_{j}^{2}$ for $j=1,3$, for all small $\tau>0$.

- Then a suitable approximated sequence of wave profiles for the discrete problems can be chosen and Theorem 1 can be proved.

Discussion

- Due to the structure of the nonlinear terms, the corresponding dynamical system is monotone so that our method can be applied.
- Indeed, we can prove the existence of traveling waves for the continuous system (1)-(3) with more general parameters.
- For the special case (as in Theorem 1), we are able to derive the existence and non-existence of traveling waves. In other words, the minimal speed is given exactly.
- In general, there is no comparison for the 3 species competition system (so that the corresponding system is not monotone and our method cannot be applied).
- For certain general non-monotone system, we refer to the recent works by C.-C. Chen and his co-authors.

