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Introduction

In a 1D habitat, there are three species u, v and w living
together such that each species has the preference of food
resource so that the competition occurs only between
species u and v and between species v and w,
respectively.

In other words, species u and w have different preferences
of food resource so that no competition between them.

But, species v has both preferences so that it needs to
compete with both species u and w.
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So we have the following three species competition system:

ut = D1uxx + r1u(1− u− b12v), x, t ∈ R, (1)

vt = D2vxx + r2v(1− b21u− v − b23w), x, t ∈ R, (2)

wt = D3wxx + r3w(1− b32v − w), x, t ∈ R, (3)

where Di > 0, ri > 0, bij > 0.
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Here u, v, w are the population densities of species 1, 2, 3,

bij is the competition coefficient of species j to species i,

ri is the net growth rate of species i,

Di is the diffusion coefficient of species i.

Also, we have taken the scales of species so that the
carrying capacity of each species is normalized to be 1,

the states
(u, v, w) = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1) are
equilibria of the system (1)-(3).
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We shall always assume that

(A) b12, b32 > 1, b21 + b23 < 1,

which means that the species u,w are weak competitors to the
species v.
Intuitively, species v will win the competition and wipe out both
species u and w eventually.
Therefore, the aim of this work is to study the existence of
traveling wave for (continuous) model (1)-(3) in the form

(u, v, w)(x, t) := (ϕ,ψ, θ)(y), y := x+ st,

where s is the wave speed and (ϕ,ψ, θ) is the wave profile.
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We are interested in the monotone wave connecting the
equilibria (1, 0, 1) and (0, 1, 0).
Hence it is reduced to the study of the following problem:

sϕ′ = D1ϕ
′′ + r1ϕ(1− ϕ− b12ψ), y ∈ R,

sψ′ = D2ψ
′′ + r2ψ(1− b21ϕ− ψ − b23θ), y ∈ R,

sθ′ = D3θ
′′ + r3θ(1− b32ψ − θ), y ∈ R,

(ϕ,ψ, θ)(−∞) = (1, 0, 1), (ϕ,ψ, θ)(+∞) = (0, 1, 0),

0 ≤ ϕ,ψ, θ ≤ 1

(4)

for certain speed s > 0.

The problem (4) is a 6-dim dynamical system.
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Notice that, by a linearization of the corresponding kinetic
systems to (1)-(3), we can easily check that near the
equilibrium (1, 0, 1) the stable manifold is of dimension 2 and
the unstable manifold is of dimension 1; and the equilibrium
(0, 1, 0) is stable such that the stable manifold is of dimension 3,
under the assumption (A).
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If we consider the linearization of the second equation of (4)
around the state (1, 0, 1), the corresponding characteristic
equation is given by

D2µ
2 − sµ+ r2(1− b21 − b23) = 0. (5)

We easily obtain that (5) has a positive solution if and only if
s ≥ s∗, where

s∗ := 2
√
D2r2(1− b21 − b23).

Thus, the minimal speed smin (if it exists) for the continuous
model (1)-(3) with ϕ′ < 0, ψ′ > 0, θ′ < 0, must satisfy that
smin ≥ s∗.
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Indeed, since the limiting linear equation of the second
equation in (4) as y → −∞ is given by

D2ψ
′′ − sψ′ + r2(1− b21 − b23)ψ = 0

which has a monotone solution near y = −∞ only if s ≥ s∗.
Hence we should have smin ≥ s∗.

We remark that the minimal speed smin is the constant such
that a traveling wave solution with speed s exists if and only if
s ≥ smin.
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We now state the following main result of this work on the linear
determinacy for (4).

Theorem 1

Assume that (A) holds. Also, let D2, r2, b21, b23 > 0 be given.
Then smin = s∗ as long as (Dj , rj , bj2) ∈ B1

j ∪B2
j , j = 1, 3,

where

B1
j := {Dj ∈ (0, 2D2], bj2(b21 + b23) ≤ 1, rj > 0}, (6)

B2
j :=

{
Dj ∈ (0, 2D2), bj2(b21 + b23) > 1,

0 < rj <

(
2− Dj

D2

)
r2(1− b21 − b23)
bj2(b21 + b23)− 1

}
, (7)

for j = 1, 3.
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In fact, the definition of linear determinacy is first defined in
[Lewis-Li-Weinberger(2002)], which means that the
minimal speed is determined by the linearization of the
problem at some unstable equilibrium.

For the works related to linear determinacy, we refer to
[Hosono(1998)], [Huang(2010)], [Huang-Han(2011)],
[Guo-Liang(2011)] for a 2-species competition system.
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Main idea for the proof of Theorem 1

First, we derive the linear determinacy of the spatial
discretization of (1)-(3) in the following form

u′j(t) = d1D[uj ](t) + r1uj(t)[1− uj(t)− b12vj(t)], (8)

v′j(t) = d2D[vj ](t) + r2vj(t)[1− b21uj − vj(t)− b23wj(t)],(9)

w′j(t) = d3D[wj ](t) + r3wj(t)[1− b32vj(t)− wj ], (10)

for j ∈ Z, t ∈ R, where dj is the discrete diffusion rate and
D[uj ] := (uj+1 − uj) + (uj−1 − uj) ...
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In particular, we take dj = Dj/τ
2 in (8)-(10) for any τ > 0

small.

Hence we have a sequence of traveling waves for the
approximated discrete problems.

In order to passing to the limit, we apply the method of
discrete Fourier transform to derive the equi-continuity of
the approximation sequence of wave profiles.

Such an indirect approach (used first in [G.-Liang(2011)])
might be unusual, but it has its own interest and advantage.
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The details

Now, a traveling wave of (8)-(10) is a solution in the form

(uj(t), vj(t), wj(t)) = (U(ξ), V (ξ),W (ξ)), ξ = j + ct,

where c is the wave speed and {U, V,W} are the wave profiles.



Introduction Main idea The details Discussion

Therefore, the problem of finding traveling wave of (8)-(10) is
equivalent to find (c, U, V,W ) ∈ R× [C1(R)]3 such that

cU ′ = d1D[U ] + r1U(1− U − b12V ), ξ ∈ R,

cV ′ = d2D[V ] + r2V (1− b21U − V − b23W ), ξ ∈ R,

cW ′ = d3D[W ] + r3W (1− b32V −W ), ξ ∈ R,

(U, V,W )(−∞) = (1, 0, 1), (U, V,W )(+∞) = (0, 1, 0),

0 ≤ U, V,W ≤ 1,

(11)
where D[u](ξ) := u(ξ + 1) + u(ξ − 1)− 2u(ξ) etc.
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The first result shows the existence of the minimal wave speed
for (11).

Theorem 2

Assume (A). Then there exists a positive constant cmin such
that the problem (11) admits a solution (c, U, V,W ) satisfying
U ′(·) < 0, V ′(·) > 0 and W ′(·) < 0 on R if and only if c ≥ cmin.

The related works about the minimal speed for lattice
dynamical systems can be found in, for example,
[Chen-G.(2002)], [Chen-G.(2003)], [G.-Hamel(2006)],
[G.-Wu(2008)], [G.-Wu(2012)].
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Proof of Theorem 2

We transform the problem into a monotone system.

If we can find a suitable pair of super-sub-solutions, then
we can apply the classical monotone iteration scheme.

An idea developed in [Chen-G.(2003)], we study a
sequence of truncated problems in which only a
super-solution is needed.

This method (of truncation) was applied to the two
component LDS in [G.-Wu(2012)].
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The main difficulty here is to make sure the limit satisfies
the desired boundary conditions at ±∞..

To overcome this difficulty, we introduce one condition in
the definition of super-solution as

U+(ξ0) < 1, W+(ξ0) < 1 for some ξ0 ∈ R,

instead of non-constant-ness in the previous works.
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To estimate the minimal speed of (11), we define

c∗ := inf
λ>0

{
d2(e

λ + e−λ − 2) + r2(1− b21 − b23)
λ

}
.

It is clear that

cλ = d2(e
λ + e−λ − 2) + r2(1− b21 − b23) (12)

has a positive solution if and only if c ≥ c∗.
Moreover, there exists λ∗ > 0 such that λ∗ is the unique
solution of (12) when c = c∗. For c > c∗, (12) has exactly two
solutions λi(c), i = 1, 2, with 0 < λ1(c) < λ2(c).
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Theorem 3 (Chen-G. (2003), Chen-Fu-G. (2006))

Let c > 0 be a constant and B(·) be a continuous function
having finite B(±∞) := limx→±∞B(x). Let z(·) be a
measurable function satisfying

c z(x) = e
∫ x+1
x z(s)ds + e−

∫ x
x−1 z(s)ds +B(x) ∀x ∈ R.

Then z is uniformly continuous and bounded.
In addition, ω± = limx→±∞ z(x) exist and are roots of the
characteristic equation

c ω = eω + e−ω +B(±∞).
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Apply this fundamental theorem to

cV ′ = d2D[V ] + r2V (1− b21U − V − b23W )

with the ratio z := V ′/V at ξ = −∞, we have

Theorem 4

Assume (A). Then cmin ≥ c∗.
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By applying an idea used in [G.-Liang(2011)] ([G.-Wu(2012)]),
the linear determinacy for (11) is given as follows:

Theorem 5

Assume (A). Let r2 > 0, b21 > 0 and b23 > 0 be given. Then
there exists a constant d∗ = d∗(d2) > 2d2 such that cmin = c∗ as
long as (dj , rj , bj2) ∈ A1

j ∪A2
j , j = 1, 3, where

A1
j := {dj ∈ (0, d∗], bj2(b21 + b23) ≤ 1, rj > 0}, (13)

A2
j :=

{
dj ∈ (0, d∗], bj2(b21 + b23) > 1,

0 < rj ≤
d∗ − dj
d∗ − d2

· r2(1− b21 − b23)
bj2(b21 + b23)− 1

}
(14)

for j = 1, 3.



Introduction Main idea The details Discussion

A detailed analysis of the quantity d∗(d2), we have

Lemma 6

Suppose that (Dj , rj , bj2) ∈ B1
j ∪B2

j for j = 1, 3. Let
dj(τ) := Dj/τ

2 and d∗(τ) := d∗(d2(τ)) for τ > 0. Then
(dj(τ), rj , bj2) ∈ A1

j ∪A2
j for j = 1, 3, for all small τ > 0.

Then a suitable approximated sequence of wave profiles
for the discrete problems can be chosen and Theorem 1
can be proved.
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Discussion

Due to the structure of the nonlinear terms, the
corresponding dynamical system is monotone so that our
method can be applied.

Indeed, we can prove the existence of traveling waves for
the continuous system (1)-(3) with more general
parameters.

For the special case (as in Theorem 1), we are able to
derive the existence and non-existence of traveling waves.
In other words, the minimal speed is given exactly.
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In general, there is no comparison for the 3 species
competition system (so that the corresponding system is
not monotone and our method cannot be applied).

For certain general non-monotone system, we refer to the
recent works by C.-C. Chen and his co-authors.
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